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Abstract. The numerical properties of the radial part of
overlap integrals with the same screening parameters in
the form of polynomials in p = £R over Slater-type
orbitals have been studied and obtained by using three
different methods. For that purpose, the characteristics
of auxiliary functions were used first, then Fourier
transform convolution theorem, and recurrence rela-
tions for the basic coeflicients of 4;,, ,,, were used. The
calculations of the radial part of overlap integrals with
the same screening parameters were made in the range
1<n<75 1<n <75 and 107° < p.
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1 Introduction

As is well known, the quantity known as the overlap
integral is of considerable importance in the theory of
molecular structure. An extensive collection of formulas
for the evaluation of these integrals has been provided
by Coulson [1] and Roothaan [2], who derived them by
employing elliptical coordinates. Computer programs
exist [3] that successfully implement this approach.
Numerical tables and auxiliary functions for these
integrals have been calculated by Mulliken et al. [4]
and Kotani et al. [5], and Todd and et al. [6] gave a
general overlap formula based on the technique of the
Fourier transform and the theory of residues.

In order to evaluate overlap integrals, it is necessary
first the specify the forms of the atomic orbitals (AOs).
In quantum mechanical calculations of the electronic
structure of molecules one has to evaluate overlap inte-
grals over exponential-type orbitals (ETOs) accurately
and efficiently. These integrals arise not only for
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Hartree—Fock—Roothaan equations for molecules, but
are also central to the calculation of arbitrary multi-
center integrals based on the series expansion formulas
for ETOs about a new center. Some kind of ETOs, called
B functions, in which radial parts are reduced to Bessel
functions have been studied in Refs. [7, 8, 9, 10, 11, 12,
13] for the evaluation of overlap integrals.

One of the well-known ETOs are Slater-type orbitals
(STOs), which are of fundamental importance in the study
of various properties for molecules. STOs model the ra-
dial part of exact hydrogen-like AOs quite accurately but
lead to difficulties in the evaluation of many-center inte-
grals. To overcome this problem, Boys [14] introduced
Gaussian-type orbitals (GTOs). GTOs suffer from their
unphysical behavior close to and far from the nucleus.
STOs are still used in most semiempirical methods, usu-
ally as minimal valence sets, sometimes including d
functions [15]. In ab initio theory, GTOs are now widely
established, except for atomic ab initio calculations,
which often employ STO bases [16, 17, 18] and some
benchmark STO calculations on small molecules [19, 20,
21,22]. A comparison of STO and GTO bases needs about
twice the size of a STO basis to obtain comparable accu-
racy [20, 21]; thus, STOs bases are still very attractive.

Some classical work on one-electron integrals (over-
lap, kinetic energy, nuclear attraction, and electron re-
pulsion) over STOs can be found in Refs. [23, 24, 25, 26].
A variety of approaches for the evaluation of molecular
two-electron multicenter integrals in STO bases also
exists, for example, one-center expansions [27, 28, 29],
recurrence schemes [30], integral transformation
methods [31, 32], and other methods [22, 33].

It is known that in the Hartree—Fock—Roothaan ap-
proximation all the one- and two-center integrals
(overlap, kinetic energy, and nuclear attraction) are ex-
pressed in terms of overlap integrals [24]. These integrals
are in the form of infinite series of which limitations
depend on quantum numbers. Although there is no
limitation for one-center integrals in quantum numbers,
in two-center integrals there is a limit in the values of the
quantum numbers and in these integrals the accuracy is
slightly lower than in the one-center integrals [30].



It is well known that the existing literature [27, 30, 33,
34, 35, 36] contains a number of formulas for overlap
integrals over STOs which are not satisfactory for large
quantum numbers. Dealing with large quantum numbers
of overlap integrals with the same screening parameters is
unavoidable, especially in the approach based on the
expansion of STOs in terms of STOs at a displaced center
and on the relations for the expansions of one- and two-
center charge densities over STOs at a new origin [33].

In Ref. [37], the general formula for overlap integrals
with the same screening parameters of STOs was ob-
tained by using Fourier transform convolution theorem.
In Ref. [38], this formula was used to calculate overlap
integrals on a computer in the range of 1 < n < 30 and
1 £ n” £30. In the case of quantum numbers above 30,
it has been observed that precision fails owing to
numerical errors in the coefficients G, employed
in the calculation of the overlap integrals with the same
screening parameters.

It should be mentioned that overlap integrals between
STOs with equal screening constants play an important
role for evaluating multicenter integrals based on the
expansion of STOs about a new center. The overlap
integrals with the same screening parameters in the
molecular coordinate system (non-lined-up coordinate
systems) have the form

Snlm.n’l’m’@) :/X:lm(aFa)Xn’l’m’<C77b)dv . (1)

Performing the angular part of the overlap integral leads
to only one term, because of the orthogonality of the
spherical harmonics. By carrying out the radial integra-
tion with the same screening parameters, Eq. (1) be-
comes [39]
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This integral corresponds to normalized real STOs.

In this study, we are dealing with the radial part of
overlap integrals with the same screening parameters in
the form of polynomials in p = ¢R. In Ref. [39], using
the characteristics of auxiliary functions, general for-
mulas were established for the coefficients a,, ., by
using nonnormalized real STOs. In the first sections of
this article we introduce these expressions and for the
calculations of 4;, ,,; some modifications were used. In
Sect. 2.2, the coeflicients 42, ,,, are derived in terms of
the Gaunt the Gegenbauer, and the expansion coeffi-
cients by using equations given in Refs. [37, 38] for
overlap integrals. Section 2.3. is devoted to a new
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homogeneous  recurrence formula and  analytical
expressions for the coefficients of 4;,, .., are derived.
The new algorithm for the calculation of the radial part
of overlap integrals with the same screening parameters
over STOs is based on recurrence relations for the basic
coefficients of 47, 'l

We therefore want to demonstrate in this article how
the formulas for the 43, ,,, coefficient can be used for
the calculation of the radial part of overlap integrals. We
shall show that the representations known so far for the
Fourier-convolution transform techniques are indeed
sufficient for a satisfactory calculation of these integrals.
We shall do this by analyzing the merits and limitations
of the computational algorithms we use and by com-
paring them critically with our algorithms that were for
the following three cases.

2 Calculations the radial part of the overlap
integrals between real STOs with the same

screening parameters

2.1 The expression for Ay, ., in terms of auxiliary

functions

In Ref. [39], the following explicit expression for the
radial part of overlap integrals between real STOs with
the same screening parameters is given in the form of
polynomials in the parameters p = (R by using the
characteristics of the auxiliary functions:
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Here 4, and By are the well-known auxiliary functions:
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In the same reference, the following formula for the
coefficients 45, .., is evaluated, for s = 0,
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where where
q / /9
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The exact definitions of the quantities g%, (I, /'2) and 2 4
Fi(n, m) appearing in Eq. (6) were defined in Ref. [40]. n—1l n N—L
These quantities can be rewritten in terms of binomial k==FE <T) +E ( 3 > +E ( 5 >7
coeflicients, Fy(n), in the following forms:
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2.2 The expression for A, ..., by using the Fourier
transform convolution theorem

In Ref. [38], using the Fourier transform convolution
theorem, general formulas were established for the
overlap integrals with the same screening parameters
of STOs. We Insert 0 = ¢ = 0 into Eq. (3) in Ref. [38]
and then in order to illustrate the previous statements we
compare two different representations (obtained equa-
tion from Ref. [38] and Eq. 2 in this study) for 4, .,

2s+l 1+1
S (=)L) (1, 1)
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where C;(IA, I') is the Gaunt coefficients, and the
expansion coefficients for the translation of STOs from
one center to another are defined as follows from
Ref. [41]:
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The other coefficient in Eq. (9) has the following form
[38]:

() FN(2N)) 1

N)\/F,(2n)F,

‘a(I+1,n—0L1I"+ 1,7

ag(o,myof ' 0 n")
E(n/2)E(n'/2)
= Z Z ay (OC n)aj(oc }’l)as m— (OC I’l) ) (11)
m=0  j=0
where a,(o,n) are Gegenbauer coefficients [37] with
ap(a,n) =F_1(a—1+n—m)F,(n—m) .

For special values of s and L, Eq. (9) gives the following
properties:
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We use the recurrence relations for the Gegenbauer
polynomials [42],

2oc(x2 - 1)C:f11 (x) =nxC(x) — Qo+n—1)Cr_,(x) ,

and the relation
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Then we obtain the following relation properties satis-
fied by Gegenbauer coefficients:
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The symmetry properties satisfied by Gegenbauer coef-
ficients are given in Ref. [38] in the following forms:
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2.3 Recurrence relations for 4y, 1,

In order to derive the expression for Eq. (1) in terms of
the basic coefficient 4, ; ,,, we use Egs. (1), (14), and
(15) of Ref. [43] for the translation of spherical har-
monics centered on the nucleus a. Then using the
expansion formula for the product of two spherical
harmonics both with the same center [40], it is easy to
show that the overlap integrals with respect to lined-up
coordinate systems are expressed through the basic
coefficient 4;,, .,,. If the analytical structures of the
overlap integrals are analyzed it becomes obvious that

Ay ey AT€ best expressed in terms of Gaunt coefficients

and 45, 100,1/+1'LO*
Fow (20 +20)\ '/
A Y R S et
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(16)

For lowering the indices /” of the basic coefficients
Ay oy, WE UsE in Eq. (1) the recurrence relations for the
normalized associated Legendre functions [42] and the
relations R = z, — z}, in the lined-up coordinate systems.

Then we obtain
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Equation (17) allow us to express 45 ., = A5o ypo 1N
terms of the coefficients 4, ,, = 45 00 “for the calcula-
tions of which can use the following recurrence relations.
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The symmetry property is
Afm Wiy = Afﬂz';.’,nu : (24)

3 Numerical results and discussion
3.1 The calculation method of the case in Sect. 2.1

To calculate the coefficient 45, ., by using Eq. (5), it is
necessary to know the values of the quantities

. apy_q 4 —1
Ab//:* 14‘S /_ /7+ 2nl+1 2l/l +2 nn ,
nn'l 4 271/(2}’1/ — 1) nn'—10'—1 \/( )( ) +1/ 1
2n+ 1)2n +2)2n + 3)(n + 2)\ /2 .
( n/(zn/ — 1) Af:rlZn wr—1| = bl’—lAi:,n’L’—2 ) (17)
wheren >/, n">2/+1,/">1,t = 0 and the coefficients (IA I'7), which are given by Eq. (8) in terms of

a; and b; are determined by following equations:

o asr N7 2 172
“= ((21+1)(21+3)> b= <m)

b1nom1a1 coefficients. The quantities g7 5(12,1'2) calcu-
lated from Eq. (8) are checked for thelr accuracy using
Table 1 in Ref. [40]. In this comparison, perfect match-
ing is obtained.
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3.2 The calculation method of the case in Sect. 2.2

The values of the Gaunt coefficients and the Gegenbauer
coeflicients should be known to calculate the radial part

2n+1)(2n+2)
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Table 1, all the calculations were made in the range
1<n<75 1<n <75, and 10°° < p.

For 0 = ¢ = 0in Eq. (12) of Ref. [38], one can ob-
tain the following recurrence relation:

Sutzwri(p) = e

[40Sui1140.00:(P) + BuSnsri-12w02(p)]

V@ + 1) +2)

of overlap integrals with the same screening parameters,
by using Eq. (9). Gegenbauer coeflicients were calculat-
ed from Eq. (11) and stored in the memory and then
they were used in the calculation of Eq. (9). The
symmetry properties of the Gegenbauer coefficients
given by Eq. (15) were also used to minimize the
memory requirement. In order to put it into, or get it
back from, the memory the position of a certain
Gegenbauer coefficient is determined by the relation

n—1E(3) t+lfk s—1 nt1—i
=> Z () +o+1

t=0 k=0 m=0 i=0 ;=0
_n(6n® +30n+39)  7(1—(=1)" (_1)"—1E(§)
N 48 32 8 2

The second term in the left-hand side of Eq. (14) is put
into the right-hand side and then the accuracy of the
Gegenbauer coefficients is checked by using this equa-
tion for various o and n parameters. Each form that
was constructed was found to be consistent with each
other.

The Gaunt coefficients and their symmetries are cal-
culated from Egs. (6) and (8) in Ref. [44] through the
binomial coefficients and from Eq. (7) in Ref. [44]
through the Clebsch—Gordan coefficients for some
selected quantum numbers.

3.3 The calculation method of the case in Sect. 2.3

As seen previously, the calculation of the radial part of
overlap integrals with the same screening parameters can
be reduced to the calculation of basic coefficients 45 .,
followed by the application of several recurrence rela-
tions. The radial part of overlap integrals with the same
screening parameters can be obtained by repeated
application of recurrence relations (Egs. 16, 17, 18, 19,
20, 21, 22, 23) and an analytical formula (Eq. 2). In this
calculation the coefficient of Ag‘o was taken as the
starting point.

For the three previously mentioned cases, the results
of the radial part of overlap integrals with the same
screening parameters and the computation times in
milliseconds are shown in Table 1. As can be seen from

+s(n+2) ===t ]

[ArSutw10412(P) + BriSapiws1r-12(p)] - (26)

This relation determines the accuracy of the computer
results of the radial part of overlap integrals with the
same screening parameters. This relation also conforms
all the methods used to calculate the radial part of
overlap integrals with the same screening parameters.
However, the method used in case 2.2 gives the accuracy
up to eight decimal digits for n, n” > 50, whereas the
other cases are much more sensitive (at least 12 decimal
digits ) to n, n’ < 75.

s(s—1) (25)

The symmetry property of the coefficients 45, ..,
given by Eq. (24) are taken into account from the stored
coefficients 45, ;. recalling relations of a certain co-
efficient 43, ,,, are determined by Egs. (17), (18), and
(19) of Ref. [38].

The methods used in cases 2.1 and 2.3 are especially
useful for computation using computers for large quan-
tum numbers of the overlap integrals with the same
screening parameters contained in the series expansion
formulas of the multicenter molecular integrals. The
methods also have the remarkable property that their
computational complexity does not increase with nand »’.

The algorithms which were described in this article are
more efficient and should be sufficient for the practical
application of the given formulas in molecular calcula-
tions. It can be shown that our computational algorithms
allow a reliable and fast evaluation of these integrals even
for extremely high values of the orders n and n’.

The computer program was written in Turbo PAS-
CAL 7.0 on an IBM PC 340. In all parts of the program
double-precision arithmetic was used.
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